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We investigate new algorithms for the solution of nonseparable elliptic equations in 
irregular domains. Such equations arise frequently in fluid dynamics and other branches of 
continuum mechanics. We show that the combined use of a fast iteration (involving the use 
of fast Poisson solvers (FPS) in rectangular domains) and the capacitance matrix method can 
lead to algorithms which are several times faster than traditional methods of successive over 
relaxation @OR), even when the latter are vectorized. We also show that use of a certain 
acceleration procedure enables problems in irregular domains to be solved with only slightly 
more computational effort than in regular domains. 0 1989 Academic Press. Inc. 

1. INTRODUCTION 

In many fields of physics, notably those in which numerical models play a signili- 
cant role (e.g., plasma physics, fluid dynamics, magnetohydrodynamics) elliptic 
equations occur which must be solved numerically. In this paper we describe a 
method for the fast solution of non-separable elliptic equations in irregular domains 
and some illustrative computational experiments. The examples we have in mind 
relate to ocean modelling and are mainly 2-dimensional, although the methods used 
are more general. 

The simplest nontrivial case of an elliptic equation is perhaps Laplace’s or 
Poisson’s equation in a rectangular domain, namely 

v2* = q. (1.1) 

In quasi-geostrophic dynamics this equation occurs as a diagnostic equation for the 
stream-function II/ in terms of the forcing function, the quasi-geostrophic potential 
vorticity q. This equation would have to be solved, in two dimensions with given 
boundary conditions, at each timestep of a numerical model. An idealised model 
would perhaps have a rectangular domain, whereas if the model were attempting to 
cover a realistic ocean the domain would obviously be irregular. 

In “primitive equation” numerical models (i.e., typically in oceanography those 
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models derived from the Navier-Stokes equations only with the Boussinesq 
approximation and the assumption of hydrostatic balance) a more complicated, 
generally non-separable, equation ensues. Non-separable equations do not allow 
their solution to be written in the form p(x)r(y), where p and r are arbitrary func- 
tions of the co-ordinates x and y, respectively, a fact which precludes the direct use 
of fast solvers. The equation arises specifically from the imposition of a (artificial) 
rigid lid at the top of the fluid. This prevents the propagation of the “external 
barotropic mode,” namely, a wave of the shallow water equations which propagates 
at an approximate speed c given by c = &. For an ocean 5 km deep, c is 
approximately 0.2 km/s. With a grid of say 25 km this would necessitate a CFL 
limited timestep of 2.5 min, clearly unrealistic for integrations of many years. For- 
tunately, this mode is believed unimportant for large scale ocean dynamics, and it 
may be eliminated by a rigid lid approximation without corrupting the dynamics. 
(Other methods of treating it are also possible, typically involving the time-stepping 
procedure, but we are not concerned with that here.) 

Invoking the rigid lid approximation leads to a 2-dimensional diagnostic 
equation for the pressure field at the physical top of the ocean. We refer the reader 
to Holland and Lin [ 1 ] or Bryan [Z] for derivations. The equation is of the form: 

v. (dx, Y)W) = P(X, VI. (1.2) 

If the domain is regular (e.g., rectangular) we shall call the domain &Y with 
boundary &4?. An irregular domain we shall refer to as .Y with boundary aY. 
Equation (1.2) also occurs frequently in plasma dynamics. In (1.2) $ is the 
unknown field (with given boundary conditions, say I,,+ = tib on $8 or au), g(x, y) 
is a given function physically related to the underlying topography (and usually 
constant in time), and p(x, y) is a time varying forcing function. The problem, then, 
is to solve (1.2) in a irregular domain, Y, many times with different forcings but 
with the same geometry. In many modelling applications in fluid dynamics (1.2) has 
to be solved at each timestep, and there may easily be several thousand timesteps. 
Thus, frequently, very extensive preliminary computational work which may be 
necessary to solve (1.2) is quite acceptable, since its overall contribution to the 
computational load then becomes insignificant. This is obviously not the case if the 
geometry changes each timestep. 

The important differences between (1.2) and the simplest case (l.l), then, are: 
(i) Eq. (1.2) is in general non-separable and (ii) we wish to solve (1.2) in an 
irregular domain. For these two reasons slow iterative methods (e.g., successive 
over relaxation) have in the past often been used. Solving (1.2) this way is often the 
largest expense in fluid codes. Our purpose is to show that, given a fast solver in 
a rectangular region, much faster methods can be employed. In the next section we 
shall describe these methods. In Section 3 we shall describe some numerical results. 
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2. METHODOL~CY 

The method is a combination of the capacitance matrix method (Buzbee et af. 
[3]; Proskurowski and Widlund [4]) and a fast iteration (Concus and Golub 
[S]), which itself uses a fast Poisson solver (FPS) such as multiple Fourier trans- 
forms or the FACR algorithm (Swartztrauber [6]). We shall give a brief review of 
each method and then show how they may be combined. Our discussion will be 
aimed more toward the physicist than the numerical analyst and no proofs of 
consistency or convergence are offered. 

2.1. Heuristic Description of the Capacitance Matrix Method 

The physical origin of the method lies in the replacement of boundary conditions 
by. point charges (e.g., Hackney [7]). The problem is to solve an elliptic equation 
in an irregular domain; for simplicity we shall consider for now only Poisson’s 
equation with Dirichlet boundary conditions: 

V’ti = P(X, Y). (2.1) 

The method is trivially extended to Helmholtz’s equation V’$ - IC’$ = p(x, y). The 
general philosophy is as follows. We first solve (2.1) in a regular (say rectangular) 
region &?, with any smooth (typically zero) boundary conditions for Ic/ on 89, by 
any available method. (A typical fast algorithm might involve double Fourier trans- 
forms, or be the FACR method.) Embedded within this is the region of interest, say 
Y with boundary 89 (Fig. 1). The source term p is given everywhere in 9, is zero 
on 89 and its value is irrelevant elsewhere. Let the solution of (2.1) on 9 be + 1. 
Suppose its value on aY is $b. Then we have found the (unique) solution to (2.1) 
on 9’ with boundary condition tib. Suppose now we find the solution to Laplace’s 
equation 

v2*, = 0 (2.2) 

with ti2 = -tjb on 89. Since the equations are linear, we may add the solutions 
and find 

v2* = P, (2.3) 

FIG. 1. Schema of regular domain W with boundary 89, and irregular domain Y with boundary 
89’. Y may be wholly embedded within 9, or may share a common boundary. 
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where Ic/ = 11/r + I+$~ (where V*$, = p(x, y) and V*Ic/* = 0) and rl/ will be the solution 
of (2.1) on 9 with I,+ = 0 on ~39. This is the required, and unique, solution to our 
problem. 

The only difficulty, then, is to solve (2.2) with the required boundary condition 
on ~39’. Evidently there are at least two methods to do this. The first (“A”) is direct 
but requires a lot of storage (of the order Mx N, where A4 is the number of grid 
points in the domain 99, and N is the number of irregular grid points, i.e., the 
number of grid points on ~39). The second (“B”) requires another call to the fast 
solver, but requires only N x N words of storage. 

(a) Method A. The solution to V*11/, = 0 with $* = --rjb on Y is given by 

$2(x, y) = - 1 Ic/&‘)9& y I s’) ds’, (2.4) 

where C!$ is a boundary Green’s function and the integration ds is along &Y (Morse 
and Feshback [S]). Numerically, we would implement this by first evaluating the 
appropriate discrete form of % (an M x N matrix), multiply it by Gb and evaluate 
the integral as a sum along ~39’. The sum tjl + I+?* is the required solution. Since 9b 
is a very large matrix, the use of this method is impractical for interesting problems 
with current computers. Thus we shall leave this method aside. 

(b) Method B. This method relies on one lemma. It is that the solution of (2.2) 
may be obtained by replacing the inhomogeneous boundary conditions with an 
appropriate distribution of “source” (i.e., terms which would appear on the right- 
hand side) along the boundary &!Y. This is a well-known result (e.g., Morse and 
Feshback [8]), although perhaps not immediately obvious. 

This means the following. Let the solution of the homogeneous problem (with 
inhomogeneous boundary conditions on W’) be $*. Then we can write 

tiz(x, Y) = - j $(x’, y’P(x, y I x’, y’) dx’ dy’, 

where 6(x, y) (the extra source) has nonzero values only along the boundary aY. 
Thus we can immediately write 

$2(x, y) = - j fi(s’)%x, y 1 s’) ds’. (2.5) 

This is very similar to (2.4), except that the Green’s function is different, and the 
source term p is not the actual boundary value of streamfunction. It is in fact 
unknown at this stage. It is impractical to keep ‘3(x, y 1 3’). However, if we can 
evaluate fi we can obtain ti2 directly by a call to our fast solver. Now, consider (2.5) 
on 9’. Then 

$z(s) = +b = - j fi(s’)Y(s ( s’) ds’. (2.6) 

581 ‘X2.‘2-I I 
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We shall call 9(s 1 s’) a partial Green’s function. It is just the projection of the 
Green’s function on SY’, in the sense of Proskurowski and Widlund [4]. We can 
write (2.6) in a matrix form \vr, = I&G where \vb is the vector of values of It/h along 
S, fi, is to be determined and G is the appropriate discrete partial Green’s function. 
Then simply 

(i,=y~~G-‘. (2.7) 

Given fi,, (2.3) is equivalently written V2tiz = 0, (where the discrete form of all 
operations will henceforth be implicit). The solution of this will be equivalent to the 
solution of (2.3). Given b,, the solution to our problem is, in fact, most easily 
obtained as the direct solution to the equation 

V’l+b=p+& (2.8) 

In summary, a recipe for using the capacitance matrix method is to first determine 
the partial Green’s funtion for the particular geometry by solving (2.1) many times, 
each time with a unit source on each irregular gridpoint. The discrete partial 
Green’s function is simply the matrix of solutions at each boundary point for each 
source. (It is clear from (2.7) that it is an “impulse-response” matrix, giving the 
response $ from a source p.) Then, each timestep one first solves (2.1) in a regular 
domain &! with the known source. Using (2.7) one obtains the modified source, and 
the solution with the required boundary conditions is obtained by another call to 
the fast solver to obtain the solution of (2.8). We note that the explicit capacitance 
matrix method described above necessitates determining the Green’s function, or 
capacitance matrix. Although this is rather time consuming, as stated in the Intro- 
duction it may then be used many thousands of times and its relative burden then 
becomes negligible. For further numerical discussion, the reader is referred to 
Prokurowski and Widlund [4]. 

2.2. Fast Iterative Methods for Non-separable Elliptic Equations 

The solution of (1.2) in a rectangular domain is obtained by the iterative 
procedure 

V2$ “+‘=(p-vl)“.vg)/g, (2.9) 

where superscript n denotes the iterate. At each iteration the right-hand side is 
assumed to be a known forcing, and a fast solver can be employed for what is 
simply Poisson’s equation in a regular domain. There are many ways to speed 
convergence; here we mention only two, drawn from Concus and Golub [S]. The 
first is a form of preconditioning, in which the variable rc/ is replaced by 
4(x, y)= [g(x, JJ)]“‘$(x, y). Equation (1.2) becomes 

V’qs-g’qs=fr, (2.10) 
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where g’(x, u) = g-1/2V2g1/2 and f’(x, y) = gP”2p(x, y). Second, Chebychev 
acceleration may be employed. This involes 

II/ ntl =o”+l W+’ -q-‘)+$“-‘, 

where W’ = 1, o2 = 2/(2 -p2), eY+’ = (1 -p20”/4))‘, and p is the spectral ratio of 
the iteration matrix and $ refers to a preliminary value of $. However, neither of 
these add-ons are, in principle, essential although in practice they may be very 
useful. 

2.3. Non-separability and Irregularity 

To solve (1.2) in an irregular domain we combine the methods of Sections 2.1 
and 2.2. There are two somewhat distinct ways of doing this, which we shall 
describe separately. The second perhaps appears at first sight more natural, but the 
first is faster. 

(a) Method 1. In this method we obtain the partial Green’s function for the 
Laplacian operator in P’, just as in Section 2.lb. Then each iteration step simply 
involves first solving (2.9) on B’, then applying the capacitance matrix multiplica- 
tion (2.7) to obtain the modified source, and then solving (2.9) again but with a 
modified source, as in (2.8). Explicitly this algorithm goes as follows. 

Solve 

V2*“+l = (P -w”~vgvg. (2.1 la) 

Now obtain a boundary source: 

p,=ljh3 ‘. (2.1 lb) 

Now solve again: 

v2*n+ I= (P + P, -V” .Vg)/g. (2.1 lc) 

Repeat until convergence. 

Note that at each iteration step the boundary conditions will be exactly satisfied. 
The procedure may be significantly accelerated by replacing (2.1 lc) by 

v2qI+2= 
(P+i%--$“+‘w/g (2.1 Id) 

which has the flavour of the GaussSeidel method. At each iteration the boundary 
conditions are no longer exactly satisfied but will be satisfied when convergence 
is achieved, to the desired accuracy. If it is felt necessary to exactly satisfy the 
boundary conditions, then the last iteration could use (2.1 lc) instead of (2.1 Id). 
Using (2.11d), we are in a loose sense getting two iterations for the price of one, 
and the procedure may now be expected to converge almost as rapidly as if there 
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were no need to transform from W to Y. If so, then since (2.1 lb) is very fast, the 
entire method will be only a little slower than solving (1.2) in a rectangular region. 

(b) Method 2. This involves first evaluating the partial Green’s function, not for 
the Laplacian operator, but for the operator V(g .V*) on Y. To do this one must 
solve 

V~k(X, YW)=~x,d (2.12) 

several times, each time with x’ being a different gridpoint along &Y. This can be 
done with a solver in a rectangle, but we note that the equation is non-separable, 
so no very fast solver is available. Thus, the iteration procedure of (2.9) must be 
employed. The procedure is fairly slow just because we must solve (2.12) as many 
times as there are irregular gridpoints, and each time an iteration procedure must 
be used. Nevertheless, one has a good first guess each time (namely the solution 
from the adjacent delta function source, which can also be shifted a grid point or 
two for an even better first guess). Further, for applications where the geometry and 
diffusion function are unchanging this need only be calculated once and for all, and 
the associated computer time is then negligible. Given the Green’s function, the 
algorithm goes as follows. We calculate the solution to (1.2) in .4? using the iteration 
(2.9). We then calculate the modified source by the capacitance matrix multiplica- 
tion (2.7). Then we calculate the solution to (1.2) in 9; that is, solve (1.2) in W with 
a modified source: 

v. Mx, Y)W) = Pb? Y) + P(s). (2.13) 

This is done using the iteration (2.9). On convergence we have the required 
solution. Explicitly, we solve (1.2) in .BY by iterating as many times as needed: 

vz*n+ I= (P -VP .Vg)/s. (2.14) 

Then we obtain a boundary source 

$, = *h9-‘. (2.15) 

Then we solve (2.12) by the iteration: 

V2Vi1 = (P+~.s-w”‘vgYg~ (2.16) 

The capacitance matrix multiplication (2.15) is performed only once. The boundary 
conditions on JY will not be satisfied exactly by (2.16) until convergence has been 
achieved. 

3. NUMERICAL RESULTS 

In this section we present some results of the numerical experiments used to 
illustrate the ideas of the previous sections. The algorithms for Methods 1 and 2 
described in Section 2 explicitly proceed in the following step: 
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Method 1. 1. Preprocessing. Obtain capacitance matrix 3 with the elements sj 
being the solution values at the ith irregular point resulting from a unit source at 
the jth irregular point. It is the matrix formed of the vectors Pf, where 

v2pj = 6’ I 0 
at irregular point j; 
elsewhere. 

Whereas the solution is naturally otained over the whole domain, the Green’s 
function is only saved along the irregular gridpoints (denoted here by subscript i) 
giving us the partial Green’s function. 

2. Solve V’$“+ I = [p -VI)’ .Vg]/g using a FPS. p is the original source, 
zero on ax 

3. Obtain boundary source vector: fi,= -Y-I$,, where tiB= $“+‘(xEs). 
4. Solve V2*n+2= [p+fi,,-V$“+‘.Vg]/g. 
5. Check convergence, t,V’+ 2 + $“, and repeat from step 2 until convergence. 

Method 2. 1. Preprocessing. Get capacitance matrix 3, where the element 4 
is the value at the ith irregular point of the solution of: 

at irregular point j; 
elsewhere. 

2. Solve iteratively using an FPS and (2.9) the equation: V .gVt,b, = p. 

2. Get boundary source vector: fi, = 9 ~ l$B, where It/B = + I (x E s). 
3. Solve iteratively using FPS the equation: V .gVtj = 6, + p. 

The two forcing (p) and four diffusion functions (g) used in this study are shown 
in Table I. These functions were made up, but cover a broad range of possibilities 
which may arise in physical applications. In oceanography the diffusion function 
defined by (1.2) is related to the topography and hence it is essentially random. 
Results of our experiments are shown in Table II and III. All cases were done on 

TABLE I 

Forcing (p) and Diffusion (g) Functions Used 
in the Numerical Experiments 

P 1 Const = 5 
2 10 cos[ IOn(x + y)] 

g I CO.5 +cos(n(x+y)/6)]* 
2 evl-(x+y)l 
3 I/X 
4 100X 

Note. The x and y values both run between 
0 and 1 in W. 



406 PARES-SIERRA AND VALLIS 

TABLE II 

Comparison of the time of convergence (in s) for 
the live solvers described in the text 

P g Method 1 Method 2 Method 3 SOR2 SORl 

53.50 301.80 53.50 
3.91 4.69 2.60 

19.15 15.91 28.80 

53.50 301.80 53.50 
3.98 4.07 1.87 

18.12 17.71 38.56 

53.50 473.66 53.50 
5.71 6.31 3.16 

12.92 11.70 23.58 

53.50 413.66 53.5 
4.85 5.14 1.96 

15.18 14.33 31.57 

53.50 546.66 
9.62 10.44 
8.89 8.19 

53.50 546.66 
4.80 5.80 

15.65 12.95 

53.50 329.76 
6.16 6.91 

11.64 11.39 

h 

53.50 329.76 
3.87 4.60 

18.87 15.87 

h 

21.00 74.88 
3.56 1.00 

19.77 72.10 
3.65 1.00 

20.06 74.53 
3.72 1 .oo 

19.86 73.64 
3.71 1.00 

22.86 85.56 
3.74 1.00 

20.24 75.11 
3.15 1.00 

21.37 7871 
3.68 1.00 

19.91 73.01 
3.61 1.00 

L? Very slowly convergent. 
* Not convergent. 
N&e. The domain is that of Fig. 2 with a size of 128 * 128 and 173 irregular 

points. The forcing function (p) and diffusion function (g) are given in Table I. The 
first, second, and third values in each cell represent the time of preprocessing, net 
solution time, and speedup ratio relative to SORl, respectively. 

an Alliant FX8 computer. We do not expect relative timings to be significantly 
different on any other vectorizing machine. We do not use machine coded FFTs for 
the fast Poisson solver, simply for portability and consistency between methods. 
However, such FFTs are available for many machines (including the Alliant). If 
used, they would speed up the FPS by about a factor of two, further adding to the 
relative speedup. 

Two SOR methods were implemented for timing references: SORl refers to the 
usual successive over-relaxation method while SOR2 is the black-white checker- 
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TABLE III 

Same as Table II but for a Problem Size of 64 * 64 Mesh Points 
and 84 Irregular Points 

P i? Method 1 Method 2 Method 3 SOR2 SORl 

1 1 

2 1 

1 2 

2 2 

1 3 

2 3 

I 4 

2 4 

7.88 40.32 7.88 
1.08 1.32 0.57 
8.75 7.17 16.60 

7.88 40.32 7.88 
0.84 1.02 0.58 
9.93 8.18 14.38 

7.88 51.71 7.88 
1.35 1.78 0.57 
6.70 5.08 1.88 

7.88 51.71 7.88 
1.08 1.32 0.59 
7.84 6.42 14.36 

7.88 60.05 7.88 
1.91 2.77 18.94” 
5.17 3.57 0.52 

7.88 60.05 7.88 
1.11 1.33 10.86” 
7.95 6.64 0.81 

7.88 31.70 
1.36 1.97 
7.07 4.88 

h 

7.88 31.70 
0.64 1.00 
9.99 8.39 

h 

2.69 9.46 
3.52 1.00 

2.38 8.34 
3.50 1.00 

2.58 9.05 
3.51 1.00 

2.38 8.47 
3.56 1.00 

2.79 9.88 
3.54 1.00 

2.51 8.83 
3.52 1.00 

2.75 9.62 
3.50 1.00 

2.40 8.39 
3.50 1.00 

407 

a Very slowly convergent. 
’ Not convergent. 

board technique described by Buzbee et al. [9]. This latter, “coloured” SOR 
version allows for vectorization and concurrency, greatly improving its performance 
on vector machines. On a scalar machine no such speedup would be apparent. For 
both SOR methods the optimal overrelaxation parameter (determined empirically) 
was used. The fifth method considered (Method 3 in Tables II, III) is a scaled- 
shifted version of Method 1. The scaling and shifting were done following the ideas 
of Concus and Golub [S]. For this method, the scaled (2.10) is solved iteratively 
as in Method 1 after first shifting the differential operator by K, i.e., solve 

[v+ql)“+‘= [g’-K]$“+f’, 

where the shifting parameter K is given by 

K= [min(g’)+max(g’)]/2. 
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y=o 

x=0 X=1 

FIG. 2. Domain used in the numerical experiments listed in the tables (i.e., Y and extended 
rectangular region W used in the capacitance method). Broken line marks the position of the irregular 
points. We used FACR for the solver on 9, with $ =0 on 38. The contours are from the experiment 
with pz and g,. 

The shape of the domain was the same for all cases reported here (see Fig. 2). It 
is rather simple with relatively few irregular grid points, just for demonstration 
purposes. Two sizes are reported: A 128 * 128 matrix with 173 irregular points 
(Table II) and a 64 * 64 matrix with 84 irregular points (Table III). The power of 
2 for the size of the domain is not crucial; it was chosen to optimize the efficiency 
of the particular FFT used in the fast Poisson-Helmholtz solvers (FPS) of 
Methods 1, 2, and 3. Mixed radix FFTs are of course available; using one would 
not significantly slow the results provided the numer of grid points has no prime 
factors higher than 5, not an especially restrictive requirement. In all cases the 
initial guess was zero and the iteration was stopped when the norm of the residual 
had been reduced by a factor of lo-‘. We have performed many other experiments 
with more irregular domains, with essentially similar results. The method is limited 
only by the size of the capacitance matrix, which should ideally fit in the fast 
machine core for speed and ease of coding on non-virtual machines. For a three 
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megaword machine (e.g., most Cray X-MPs one could easily use a domain of 
500 x 500 with 750 irregular gridpoints. In an eight megaword machine (Alliant, 
Cray 2, etc.) once could easily lit a problem of 1000 x 1000 with 2000 irregular 
gridpoints in core. 

Tables II and III show the time of preprocessing (i.e., computation of the 
capacitance matrix) as well as the time employed at getting the solution once the 
capacitance matrix is known. The third value in each cell gives the ratio of the time 
spent with respect to SORl. For the type of application in mind (i.e., solving non- 
separable elliptic equations coming from time dependent problems) the diffusion 
function, as well as the position and number of irregular points do not change with 
time. This allows for the capacitance matrix to be calculated and factored out once 
and for all as a preprocessing of the problem. For a long enough time integration, 
(a typical oceanographic application could involve the integration of one year with 
a 30 min time interval, i.e., 17280 time steps!) the relative importance of the prepro- 
cessing stage becomes negligible and, as shown in Tables II and III, the superiority 
of the capacitance-iteration method over SOR is evident. Another extra benefit of 
the fact that neither the differential operator nor the geometry changes in a time 
stepping problem is the great improvement in speed that can be attained by using, 
as an initial guess at a given time step, the solution from the previous timestep 
instead of a zero field as was done for the present examples. In Table IV the 
iteration by iteration details are given for the example shown in Fig. 2 (experiment 
with pZ and g, of Table I). 

The g, and g, used (Table I) are such that the scaled function g’ = g- ‘12V( g’!‘) 
is nearly constant. As shown by Concus and Golub [S] this condition is the 
optimum for the scale-shifting procedure. This is clearly reflected in our results; 
Method 3 (the scaled-shifted version of Method 1) gives the best timing for g, and 
g,, it is about twice as good as the unscaled version (Method 1) and more than 30 

TABLE IV 

Iteration by Iteration Details for the Example Given in Fig. 2 (fi, gs) 

Domain 64 x 64 Domain 128 x 128 
84 irregular points 173 irregular points 

Iteration II+“- inm’ll Max ll~“-V1ll Max 
n ll*“ll error ll~“ll error 

1 1.0 5.1(-l) 1.0 1.9 
3 6.1(-3) 2.6( - 2) 6.7(-3) 1.2(-l) 
5 3.3( -4) 1.5( -3) 7.1(-4) 1.2(-2) 
7 4.4( -5) 2.0( -4) 1.2( -4) 3.0( -3) 
9 5.9( -6) 2.8(-5) 1.5(-5) 3.7( -4) 

11 6.1(-7) 3.7( -6) 3.8( -6) 7.4( -5) 

Note. The maximum error was computed with respect to an “exact” solution 
detined as that with III/I”- $“-‘ll/lI$“ll < 1.0. 1O--‘5 
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TABLE V 

Comparison of the Time of Convergence (in s) for Method 1 
Described in the Text for a Regular and Irregular Domain 

Rectangular Irregular 

p = lO[y - l/2] 
s=expC-(x+Y)l 
p= lOcos[5a(x+y)] 
g= I/x 

1.31 

1.15 

1.66 

1.36 

times faster than the regular SOR. For a realistic case, however, the g will not in 
general satisfy this condition and the scaling-shifting can make things worse (as in 
the case of gs) or even make the procedure not convergent at all as when the very 
simple g, was used. 

Method 1 gives consistently very good timings compared with all other methods. 
In particular, not considering preprocessing time, Table II shows it to be from 3-7 
and 8-20 times faster than the coloured and regular SOR, respectively. Method 2 
gives consistently better times than SOR, but in general it is slower than Method 1. 
It might be thought that Method 2 should be a little faster than Method 1 (again 
not considering preprocessing time), since it saves N- 1 matrix multiplications 
needed to get the extra source, with N being the number of iterations needed. 
However, these multiplications are fast and the fact that Method 1 allows for the 
acceleration procedure implied in (2.11d) makes this method faster than Method 2. 
If acceleration is not used, the method is slowed by almost a factor of 2. Further- 
more, the acceleration makes the solution on an irregular domain (using Method 1) 
almost as fast as the solution of the corresponding problem on a rectangular 
domain. Table V presents the results of an experiment to analyse this point. It 
shows that, for the same problem characteristics (i.e., same functions, level of 
convergence, size, etc.) the presence of the irregular boundary does not significantly 
slow down the solution. 

4. DISCUSSION 

The results obtained above show that fast Poisson solvers in a rectangle can 
be used as building blocks to obtain efficient algorithms for more general 
non-separable equations in irregular domains. The results generally speak for 
themselves. To conclude, we shall simply outline various relevant points. 

(i) A combination of the capacitance matrix method and a fast iteration 
produces a method which is several times faster than even a vectorized (coloured) 
SOR method. 
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(ii) The method is most efficient for problems with unchanging geometry, 
where the equation must be solved several times, and the initial proprocessing time 
becomes negligible. This is a typical situation in numerical models of fluid 
dynamics. Here, the capacitance matrix may be evaluated once and for all. 

(iii) It is not necessary that the diffusion function be a constant (with time), 
since only the capacitance matrix of the Laplacian operator need be evaluated. 

(iv) Because of a certain acceleration procedure, the computation of the 
solution in irregular domains is little more expensive than the computation in 
regular domains, not counting the time taken to compute the capacitance matrix 
itself. 

(v) The very fast method of Proskurowski and Widlund [4] of computing 
the capacitance matrix, utilising the translation invariance of the problem, could be 
utilized for Method 1, but not for Method 2. This was not implemented here 
because preprocessing is not an important time factor in time-dependent modelling 
problems. Use of this method with those described above could lead to efhcient 
algorithms even for single use implementations. 

(vi) The principal limitation of the method lies in the need to keep a poten- 
tially large capacitance matrix. This may mean that for very large problems, or for 
problems where the boundary is very irregular, the coloured SOR method may be 
preferable. However, since the number of operations in the fast methods goes 
approximately as the number to do an FFT, namely N log N, where N is the total 
number of gridpoints, (since the capacitance matrix multiplications are not time 
consuming) the capacitance-iteration method will still be relatively more efhcient 
for large problems as indicated by a comparison of Tables II and III. The implicit 
capacitance matrix method (Proskurowski [lo], Faber et al. [ll]) overcomes the 
large storage requirements of the explicit methods described, since it does not 
require storage of the capacitance matrix, only that its product with a known vector 
can be calculated. There is perforce some additional cost in computational effort. 
Nevertheless, it could be used in conjunction with the above methods. 

(vii) In time-stepping problems, at each timestep the first guess will be 
relatively good, being that from the previous timestep. Very few (perhaps l-3) 
iterations are all that may be necessary. 

(viii) We have not performed any numerical experiments with Neumann 
boundary conditions, for which the boundary condition Ic/ = 0 on 89 is replaced by 
&b/an = 0 on 89. However, in principle this should cause no problem, since each 
iteration (2.11) is just the application of now standard capacitance matrix techni- 
ques, and Neumann boundary conditions on aY can be implemented at this stage 
(i.e., at each iteration). See, for example, Proskurowski and Widlund [4] or Buzbee 
et al. [3]. 

(ix) The addition of non-zero (Dirichlet) boundary conditions on %Y causes 
no problems. The easiest way is to use the standard “trick” of using the required 
boundary value as an additional source one gridpoint from the boundary (if using 
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a live point Laplacian stencil). This simple method works only because the method 
ensures a solution with It/b = 0 on A!?‘; the boundary value is applied after the 
solution has been obtained with the extra source. This rather coarse approximation 
is acceptable when the boundary coincides with grid points. 

(x) It would be interesting to compare the methods described herein with 
conjugate gradient and multi-grid methods. These may be attractive alternatives. 
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